

Oligopoly

- An oligopolist is one of a small number of producers in an industry.
- The industry is an oligopoly.
\square All oligopolists produce a standardized product.
- (If producers in an industry produce differentiated products, the industry is monopolistically competitive.)
\square We're eliminating the assumption of small market share, and of free entry and exit.
- Barriers to entry: similar to monopoly.

Oligopoly

- How much should a firm produce?
- Up to this point we have said to maximize profits simply set MR=MC.
- The profit maximization decision is not quite as simple in the world of Oligopoly
- The oligopolist's decision is best described in the context of a puzzle or game.

Duopoly

- We will study the case of two duopolists in a duopoly.
- Example:
\square ADM and Ajinomoto are the two producers of lysine.
Assumption (for simplicity): both producers have zero marginal cost.
- So the profit-maximizing output is the same as the revenuemaximizing output.

Incentives to cheat

Price of lysine	Quantity of lysine	Total revenue	
$\$ 12$	0	$\$ 0$	
11	10	110	
10	20	200	
9	30	270	
8	40	320	
7	50	350	Outcome with
6	60	360	Collusion"
5	70	350	
4	80	320	Perfect Competition
3	90	270	Outcome

Incentives to cheat

- Cooperative outcome:

The two duopolists collude and form a cartel.

- They act like a monopolist.
\square (Cartel agreements are illegal.)
Together they produce 60 million pounds.
- Assume they split it equally: each produces 30 million pounds.
- Noncooperative outcome:
\square Each firm has an incentive to cheat and produce more than 30 million pounds.

Incentives to cheat

Price of lysine	Quantity of lysine	Total revenue	In a cartel, each
$\$ 12$	0	$\$ 0$	producer makes
11	10	110	$\$ 6 \cdot 30$ million $=$
10	20	200	$\$ 180$ million revenue.
9	30	270	If one producer
8	40	320	"cheats" and produces
7	50	350	10 million pounds
more, it makes			
			$\$ 5 \cdot 40$ million $=$
			$\$ 200$ million revenue.
			If the other producer
	90	270	"cheats" also and
3	100	200	produces 10 million
2	110	110	$\$ 4 \cdot 40$ million $=$
1	120	0	$\$ 160$ million revenue.
0			

Incentives to cheat

- Why do oligopolists, unlike monopolists, have an incentive to cheat (increase output)?
- The price effect from an additional unit of output is smaller for an oligopolist than for a monopolist
\square Producing an additional unit has two effects:
- Positive quantity effect
- Negative price effect
- The Oligopolist only cares about the price effect on its own units of output
- The oligopolist in our example only produced half of the total output in the industry

Price versus quantity competition

- Oligopolists can either choose a quantity of output and sell at market price (lysine)
- Or, they can choose a price and sell as much as they can at that price
- The type of competition matters because whether or not a rival can undercut depends on how difficult it is to increase output

Price versus quantity competition

- "Cournot" - quantity competition

Firms' output capacity is constrained.
Firms can price above marginal cost
\square Example, Boeing and Airbus

- "Bertrand" - price competition
\square If firms have excess capacity they will engage in price competition.
Price will be driven down to marginal costExample, Air Canada and British Airways.

Game theory

- The study of how economic actors (producers, consumers) make decisions when the "payoff" depends not just on what they do, but also what someone else does, is called game theory.
\square The economic actors are called "players".
\square The payoffs are the firms' profits

Prisoners' dilemma

- The
payoff
matrix
shows
both players' payoffs

Equilibrium in games

- Given the
action of
one
player, what
would the other
player
do?

Equilibrium in games

- In the prisoners' dilemma, regardless of what one player does, it is always best for the other player to "cheat".

That is, cheating is a dominant strategy.
The outcome in which both players play their dominant strategy is a dominant strategy equilibrium.

- Dominant strategy equilibrium is a sub-class of Nash equilibrium.
\square This is why most cartels don't last very long

Tacit collusion

- Oligopolists may, however, be able to collude "tacitly".
\square This is especially true when they interact repeatedly, not just once as in the prisoners' dilemma.
- Example, suppose that ADM and Anjinimoto play the prisoner's dilemma game several times (sell lysine for several years)

"Tit for tat"

- The firms will likely take into account the effect of their actions this year on future outcomes
- Sure ADM can increase production to 40 million pounds this year but Ajinimoto will likely also respond by increasing production next year
\square Sometimes referred to as "tit for tat"
- Cheating will result in costs in all future periods

The dominant strategy might be "tacit collusion"

The assessment

- When oligopolists manage to collude overtly or tacitly - they create the same inefficiency as a monopolist.

Government intervention may improve efficiency (competition policy).

- But oligopolists may not be able to collude.
- We don't know a whole lot about this (yet).

