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Operators, observables, and outcomes of
measurements

Dirac's notation allows you to omit "- and ®"
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Computational basis for qubits
* There exists an infinite set of possible choices for the basis (even for 1
qubit!). But one particular choice stands out for its simplicity, the
computational basis. For 1 qubit it is given by
o7, 117}

(L)
. \ (}5:
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* For n qubits the basis is the set of all |j172J3 - . - jn), with j;, =0 or 1,
There are 2" elements in this basis (dimension M‘ and they can be
labelled by a single base 10 number/; =
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* The Hilbert space is exponentially large, and this (together with other
properties) is what leads to “quantum advantage”.

Changing the basis of a ket
) = a|0) + B[1)
* Let's write this state in a new basis {H—), ‘—)}:
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Matrices as Operators

* In quantum theory states = vectors. States can be manipulated by applying
matrices on them, so square matrices are called operators (we put a hat on
them to distinguish from c-numbers). For example the Pauli-X operator (also
known as "quantum NOT”):

= |0)1| + [1%0] = (4 (> V¥ (o) = (k6 (%

Products of operators = usual product of matrices
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Hermitian conjugate (or adjoint) of A: AT T Deggpn

*The “ T” of an operator is the conjugate + transpose of its matrix: A
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Diagonalization with a change of basis W)= (2+117)
« Consider the Pauli-X operator again: X = 10X(1| + [1)XO0] {\O%Md\?)

* Let's write it in a new basis{’—l—), |—>}:
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* Note how {|—{—) ‘—)}are eigenvectors of X : o> =(-YUl-) >~ )
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Which operators are diagonalizable? <\ \> \ | \y)\— : _ﬂo
« We can prove that an operator can be diagonalized if and only if it satisfies @

the normal property:
AAT = ATA

* The proof is advanced (p. 72 Nielsen & Chuang). Important corollary: If A is
Hermitian, it can be diagonalized and all it eigenvalues are real!
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Measurements, observables, and Hermitian operators

* An important postulate of quantum theory is that the outcome of a
measurement is always one of the eigenvalues of the observable we
are measuring. Since anything we measure in the lab - e.g. spinin S-G___

exp. or current in a superconducting circuit — is a real number, all

observables must be Hermitian operators. For example, the spin

operator: 'S CoBSTONT
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Summary

* States = vectors (kets)
* Operators = square matrices (A, O, etc). They take one state into another:
Al¥) = |®)

* Operators can be represented by a matrix that depends on the basis of your
choice. “Diagonalizable” operators are represented by a diagonal matrix when
the basis = set of their eigenvectors.

* Hermitian operators satisfy

A= AT
* Only normal operators are diagonalizable. They satisfy
AAT = ATA

* Hermitian =rmormal. Therefore, Hermitian operators always have real
eigenvalues. They represent physical quantities that we can measure
(observables).



