Measurement of observables and the
Bloch sphere

Projective measurements

* A projective measurement of state |¥) in basis {|a)} detects whether the qubit
is in one of the members of the basis: —

pa) = |{a|¥)|"
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* Say the outcome of the measurement is \ ) € {]a)}. In this case the qubit
collapses to the state

W) ~.—>\a, with prob. |(a|¥)|?

Why would we want to measure in a different basis?

* Consider |+) and |—). Can we distinguish them by measuring in the
computatlonal basis? MLASURE In Comf. BASIS @07} “7]
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* But if we measure in the {|+),[-)} basis we will get either only + or only -, i.e.
we are able to distinguish them.
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Another example
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* Measure in the computational basis:

* Consider
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* Measure in the {|+), |—) } basis: p(+) =122l :\'/\ ‘(%J T
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* These states are indistinguishable irwisj! That’s strange since | £ i) look
so similar to |£). The difference is the relative phase between |0) and |1). It
has a large effect on the state! —

Global vs. relative phase
* Changing the global phase
B) — e[ W)

does not change the measurement statistics. For all practical purposes the
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* But changing the relative phase
[T) = al0) + B]1) — [¥) = a]0) +'*4]1)

can have huge impact on measurement, depending on the basis you are
using to measure.

Measuring an observable A = Projective measurement on set
of eigenvectors of A

* Consider an abservable fl It is Hermitian, so it becomes diagonal in the
basis of elgenvectors
N
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* If the qubit is in state |¥), the probability for getting the outcome “a” is
2
= |{a|¥)

* Example: SG-z measures observable Z. SG -x measures X. What are the
probabilities? — F T 6et +1)
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Expectation value for measurements of an observable )= ( 3
* Say we do several measurements of observable A . Each time we get one of 4 N +> _ é@\* ,; (o | 3 }

its eigenvalues, the real number “a”. What is the expectation value (average)
for our measurement?
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The Bloch sphere: Geometric representation for one qubit

\

* For a given qubit state|¥), consider the vector for the expectation values for
the Pauli operators (average spin direction):
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Let’s get to work...
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* Fill up the table by calculating (17) = (@‘Y‘@)
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Summary
* Projective measurement: ’\IJ> .—) \a) with prob. Ka’\I/)P

* The outcome of a measurement of an observable A is one of its eigenvalues

with probability =|{a|¥)|? where |a> is the eigenvector associated to the
eigenvalue.

« Expectation value for an observable: (A) = Z ap(a) = (U|A|D)
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* For a given one-qubit state | V), the vector (7) = ({f:)) gives a geometrical
representation. It’s called Bloch sphere. (Z)



