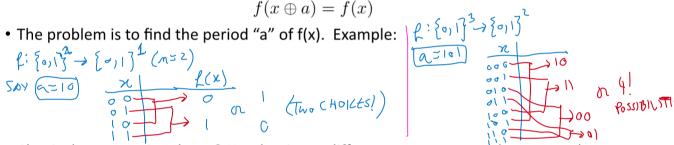
Simon's algorithm

Back to quantum measurement: What happens when we measure only 1 out of n+1 qubits?

• We talked about the "Born rule" for projective measurements:

$$|\psi\rangle$$
 $|x\rangle$ $|x\rangle$ $|x\rangle$ $|x\rangle$

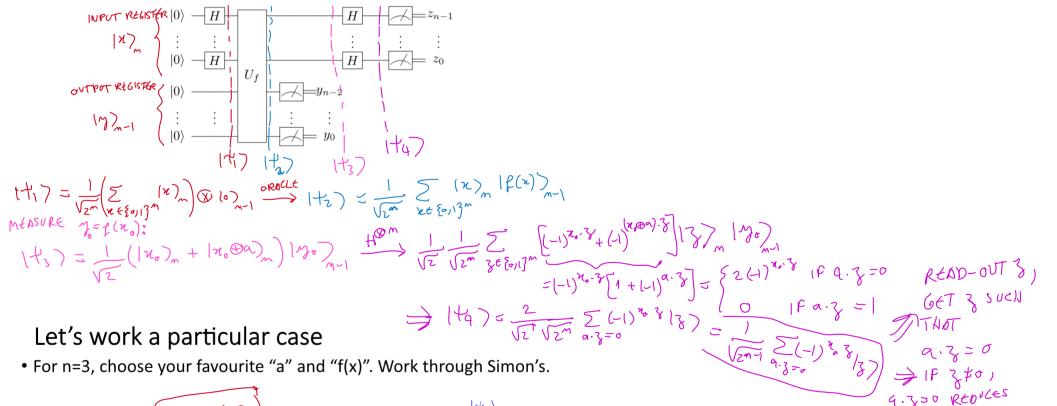
Generalized Born rule:


ule:

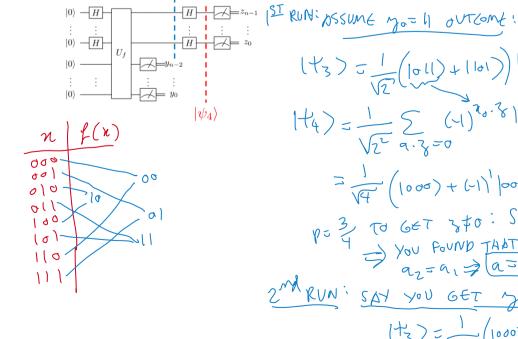
$$|\Psi\rangle_{n+1} \left\{ \begin{array}{c|c} & p(x)=? & (\exists n)_{m} =? \\ \hline & |x\rangle & p(x)=? & (\exists n)_{m} =? \\ \hline & |x\rangle & |x\rangle & = 2 & (|x\rangle) &$$

$|\psi\rangle$ $-|x\rangle$ $p(x)=\langle x|t\rangle^2 \times z^{\sigma_1}$ $|t\rangle_3 = \frac{1}{\sqrt{3}} \left(|0\rangle + |0\rangle + |0\rangle\right)$ $=\frac{1}{15}(1000)+(011)+\frac{1}{15}(111)$

Simon's problem


• Consider $f:\{0,1\}^n \rightarrow \{0,1\}^{n-1}$, with f(x)=f(y) if and only if $x=y \oplus a$, or equivalently $x \oplus y=a$, where \oplus denotes bitwise modulo-2 addition (a=0...0 excluded). Again the n-bit string "a" is unknown. You can think of this as a period-finding problem:

- Classical computational cost? Need to input different $x_1, x_2, x_3, ...$ and compare the $f(x_i)$. Once you stumble upon $f(x_i)=f(x_j)$ you know that $a=x_j \oplus x_i$.
- Suppose you tried m different values $x_k, x_l, ...$ with no success. All you know is that $a \neq x_k \oplus x_l$ for $\binom{m}{2} = \frac{1}{2}m(m-1)$ values of "a". But there are 2 n-1 values of "a". Hence your chance of success is only appreciable when $m \sim 2^{\frac{n}{2}}$


Simon's algorithm

 Quantum computer can determine "a" with high probability after running this algorithm not much more than *n* times:

- for f(x)3) Assume a particular "y"
- outcome, Calculate $|\psi_3\rangle$ and $|\psi_4\rangle$
- 4) Assume a particular "z" outcome, reduce "a"
- 5) Repeat until you find "a"

Summary

• Simon's algorithm: For $f:\{0,1\}^n \rightarrow \{0,1\}^{n-1}$, find the period "a"

$$f(x \oplus a) = f(x)$$

- Classically, you are searching a disordered database with 2 n entries. The search is stochastic, takes $\sim 2^{n/2}$ runs on average.
- Quantum Simon's algorithm is also stochastic: Each time you run, you get a "z" satisfying z.a=0. There is a good chance that the "z" you got allows you reduce the number of candidates for "a" by ½. However, there is a small chance you get nothing (e.g. z=0...0 or z= previous z). On average, you need n runs to determine "a".

Exponential speed-up !!!

1t4) = [(1000) + (101) + (110) + (111)) MEAZURE 2, GET 3=111; ⇒ a. 111 = 0 ⇒ nene y= 0 ⇒ a. 111 = 0 ⇒ nene y= 0 ⇒ a= 220 = 110 NOTE P(FIND DNS, IN ZYLVNS) ! COMPART TO CLASSICAL:

p(P(ND ANS. IN Z RUNS) =

(+3) = ((oll) + (101) (11)

14)= 1 5 (4) 30.8 18) 111) a=110

2 md RUN: SAY YOU GET Jo=00: (+3) = 1 (1000) + 1110) (00)

 $P = \frac{1}{\sqrt{4}} \left(1000 \right) + (-1) |001 \right) + (-1) |110 \right) + (-1) |$