Simon’s algorithm
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Back to quantum measurement: What happens
when we measure only 1 out of n+1 qubits?
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* We talked about the “Born rule” for projective measurements: ExAnPLE | ( :
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* Generalized Born rule: )5 k %7 7
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Simon’s problem

* Consider f:{0,1}"=>{0,1}™*, with f(x)=f(y) if and only if x=
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y @ a, or equivalently x ®y=a,

where © denotes bitwise modulo-2 addition (a=0...0 excluded). Again the n-bit string

flz®a) = f(z)
* The problem is to find the period “a” of f(x). Example:
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a” is unknown. You can think of this as a period-finding problem:
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* Classical computational cost? Need to input different x , x,, x5, ... and compare the
f(x). Once you stumble upon f(x)=f(x) you know that a=x; ® x;.

* Suppose you tried m different values x,,x,,... with no success. All you know is that

a# z @ for () = men-1 values of “a "But there are 2 "1 values of

chance of success is only appremable when -
m~ 22

Simon’s algorithm

* Quantum computer can determine
algorithm not much more than n tlmes
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with high probability after running this

INPUT REGSHR|0) zn._1
Ly I Ly
o | '\@’\gezo
ovrwrvv:télsféki 10) —lr ! .nfé{ \‘
T A | N S
|0) j Yo | \"\jq?
) ) " D
) = _/< [’t?) o\en Z_ () x
7 Vm A OT . 2 _’_9 Hjl) r e fen

MéASURE ety

& ) Hwr
\QWQFU%J + )07 /é\f_‘

Let’s work a particular case

* For n=3, choose your favourite “a” and “f(x)”. Work through Simon'’s.

1) Choose “a” | AL— LLO

2) Write down the table
for f(x)

3) Assume a particular “y
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outcome, Calculate |¢3) and [14)
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4) Assume a particular “z” outcome,

i n

reduce “a
5) Repeat until you find “a”

Summary

* Simon’s algorithm: For f:{0,1}"=>{0,1}", find the
fl@®a) = f(z)

* Classically, you are searching a disordered databa
search is stochastic, takes ~ 2"2 runs on average.
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* Quantum Simon’s algorithm is also stochastic: Each time you run, you get a N 1< P(FWD b"’s I'N ZYLVNS> | Cooo CxCLYK)
“z” satisfying z.a=0. There is a good chance that the “z” you got allows you = L}J ¥ JL NI )
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reduce the number of candidates for “a” by 7. However there is a small

chance you get nothing (e.g. z=0...0 or z= previous z). On average, you need n CO/"\\%YH’/ To CLosSICp|
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runs to determine “a”.
Exponential speed-up !!!
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