No-cloning theorem, quantum
teleportation, quantum error
correction

No-cloning theorem

* |t turns out that quantum states can not be copied or cloned. This is a
consequence of linearity. Proof: Say U is a unitary operator that is able to clone
arbitrary states [¢), |¢):

U (|¢)10) = [¥) [¢) and U (|¢) |0}) = [) [$)
L e {@\J«ppw) 103 <UDy +¢ V[ 7] = L) gl )

s = (D)L  p1AD) = O+ ) ¥

D THESE Thve ONLY AGLEE  Luiep —_ ABHY 1D « pot \AO T

oL oR $ ARe negol
* It’s also impossible to clone approximately. :
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Algorithm for quantum teleportation

* While | > can not be cloned, Alice can teleport (reassign to another qubit) her
state to Bob without corrupting it. The price she pays for this is that her qubit
(originally |{>) is reset to |0> or |1>.

* This can be done even when Bob is far away from her. All it takes is that Alice is
able to send classical information to Bob (e.g. a phone call) and crucially that
they share an entangled state. Alice (a) and Bob (b) start with the state:
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* Alice applies a CNOT with control on her ), qubit and target on her member of
the entangled pair. She gets:
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* Next she applies a Hadamard H to her first qubit:
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* Now Alice measures both qubits in her possession. Depending on the outcome
of her measurement, Bob will end up with a different state:

Alice measures Bob gets Bop  APPLIES
00 (a]0), + B(1),) T
01 (a[1), + B[0)y) X
10 ([0, — B[1);) ?
11 (a[1), — B0);) A%

* Finally, Alice calls Bob on the phone and tells him her measurement outcome. If
she got 00, Bob knows he has her state ©. If she got 01, Bob applies X to his
state ©. If she got 10, Bob applies Z ©. If she got 11, Bob applies ZX ©.

That’s it, Alice state has been teleported!

Your turn: Verify that this circuit does quantum teleportation
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Error correction

* Quantum computers are quite sensitive to interaction with environment
(electric and magnetic noise, energy relaxation, etc). But how to correct for
errors if we can not tell which state the qubitisin?

* Classical error correction: Encode using repetition or “redundancy”,

0 — 000
1 — 111
* Suppose after some time t a single bit flip occurs with probability p<<1:
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* After time t the original state can be “decoded” by majority voting. This reduces
the error prob. to p?<<p (prob. for two bit flips within t as opposed to just one).
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Can quantum error correction achieve the impossible?

* No-cloning theorem forbids repetition encoding

* A continuum of different errors can affect a qubit (similar to analog computers:
No error correction in a finite # of steps exists for them!)

* Measurement erases most of quantum information, so how can we decode by
majority voting?

P Entanglement provides a solution to these problei!_}
* Encode in the state [¢)) = «|0) + B]1) —|a|000) + 5 |111)

* Decode by measuring correlations without corrupting the state.

Quantum error correction: 3-qubit bit flip code
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Circuit for 3-qubit bit flip error correction
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Summary

* You can not clone (copy) qubits. If you have a large supply of qubits in the same
state, the best you can do is to make several measurements in order to
determine the state approximately (quantum tomography).

* However, you can teleport. If Alice and Bob share an entangled state, Alice can
transfer her state into Bob’s qubit by making measurements on her state and
communicating the outcome via a classical channel (phone call) to Bob. Bob
uses this information to transform his qubit in a state identical to Alice’s.
However, Alice’s qubit is now reset to |0> or |1>.

* A related procedure enables quantum error correction. The qubit is encoded
into a highly entangled state replacing |0> by |000>, |1> by |111>. After it goes
through a noisy channel it can be decoded according to the majority voting rule
by measuring correlations between the qubits. The measurement is done with
the help of two ancilla qubits — that way the measurement leaves the qubit
state uncorrupted! The ability to do gquantum error correction suggests that
large scale QC can become a practical technology in the future.



