Adiabatic quantum computing

Alternative to the standard "gate model" of quantum computing

The Hamiltonian operator: Represents energy in quantum theory

- We learned that Hermitian operators describe "observables": things that we can measure. ENERGY is described by an operator called "Hamiltonian", denoted ${\cal H}$ (H in calligraphic font – not to be confused with Hadamard!).
- Example: Single qubit, like an "artificial atom".

$$\mathcal{H}_{1} = \frac{\hbar\omega}{2} (I - Z) = \hbar\omega \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathcal{E}_{o} = \mathcal{H}\omega \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathcal{E}_{o} = \mathcal{H}\omega \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathcal{H}_{1}$$

 $f = 662 \times 10^{34} \text{ Jn}$, ω is frequency $\omega = 5 - 76 \text{ Hz}$ for IBM-P • Two qubits: Artificial molecule. (e. $\frac{1}{2}$ Hz)

Eigenstates of the Hamiltonian: Ground and excited states > = 61 bENVECTOR

• The eigenstates of ${\cal H}$ have "well defined energies" set by the associated eigenvalue. The eigenstate associated to the lowest eigenvalue is called ground state, denoted $|E_0>$. These states are special because they are quite

Time evolution of a quantum state

• The time evolution of a quantum state is dictated by Schröedinger's eqn, (the equivalent of Newton's F=ma, for quantum mechanics!):

on's F=ma, for quantum mechanics!):
$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \mathcal{H} |\psi(t)\rangle \qquad \Rightarrow \text{A SYSTEM OF } \text{M SYSTEM OF } \text{$$

ullet When ${\cal H}$ is independent of time, this eqn is quite easy to solve: The general

Time evolution leads to interference and tunnelling

• If $|\psi(0)\rangle$ is an eigenvector of \mathcal{H} , $|\psi(t)\rangle$ only gets a global phase:

MINK OF 107- LEFT OF WELL) LOW BARRIER TUNNELLING! TI = WX STATE MOUED FROM IRIGHT) TO ILEPT) EVEN THOUGH IT DID NOT EVEN THOUGH IT DID NOT THE TOP OF BARRIER! THE TOP OF BARRIER!

AMALOGY

$\mathcal{H}(t)$ with slow time dependence

• But what if \mathcal{H} changes in time? Sol. of Schröedinger's eqn is much more difficult. But at each time t we have "instantaneous eigenstates" $|E_i(t)\rangle$ satisfying $\mathcal{H}(t) |E_i(t)\rangle = \overline{E_i(t)} |E_i(t)\rangle$

• Assume
$$\mathcal{H}(t)$$
 changes very slowly (adiabatic) and the energy levels E_j do not coincide with each other in this case, if at $t=0$ the qubits are in one of the eigenstates $E_j(0)$ of $\mathcal{H}(t=0)$, they will remain in the "instantaneous eigenstate" $E_j(t)$. Example:
$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t) = -\omega \left\{ [1-s(t)] Z + s(t) X \right\}$$

$$\mathcal{H}(t)$$

Adiabatic theorem

• Let $(|E_i(s(t))\rangle$ be the instantaneous eigenstate of $\mathcal{H}(s(t))$ with $E_i(s(t)) \leq E_{i+1}(s(t))$. Assume that at t=0, s(0)=0 and

Adiabatic quantum computation (AQC)

- Engineer a Hamiltonian that changes in time so that $\mathcal{H}(t=0)$ has a known product state as its ground state, e.g.
- $|E_0(0)\rangle = |+\rangle |+\rangle \cdots |+\rangle = \sum_{\chi \in \{\circ,\downarrow\}^m} |\chi\rangle$ • And for $\mathsf{t=t_f}$, $\mathcal{H}(t_f)$ has a ground state that encodes the solution to the problem you want to solve. E.g. for adiabatic Deutch-Josza:

$$|E_0(t_f)\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

• So that performing a measurement (in a particular basis) will give the desired answer to the problem.

r to the problem.

MEASURE IN HAMPMARD BASIS
$$\{(+7,1-7)\}$$
 AND GE

 $P((-0.00-0.0)) = 1$
 $f(n) = (0.05T)$
 $P((-0.00-0.0)) = 1$
 $P((-0.00-0.0)) = 1$

Example: Adiabatic version of Deutch-Josza algorithm

 Recall gate model Deutch-Josza: |0 H $|\psi_3\rangle = \sum_{z \in I0,11n} \left(\frac{1}{2^n} \sum_{z \in I0,11} (-1)^{f(x)+z \cdot x} \right) |z\rangle |1\rangle$

Adiabatic version: