Adiabatic guantum computing

Alternative to the standard “gate model” of
guantum computing

The Hamiltonian operator: Represents energy in
quantum theory

* We learned that Hermitian operators describe “observables”: things that we can
measure. ENERGY is described by an operator camonlan” denoteo@
(H in calligraphic font — not to be confused with Hadamard!).

* Example: Sjngwit like an “artificial atom”.
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* Two qubits: Artificial molecule (e-5 H?, . J>0
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Eigenstates of the Hamiltonian: Ground and excited states
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* The eigenstates of H have “well defined energies” set by the associated
eigenvalue. The eigenstate associated to the lowest eigenvalue is called
ground state, denoted |E,>. These states are special because they are quite
stable: They can only change if energy is injected in them.
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* The other states with higher energy are called excited states.

Time evolution of a quantum state

* The time evolution of a quantum state is dictated by Schréedinger’s eqgn,

(the equivalent of Newton’s F=ma,for quantum mechanics!):
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* WhenH is independent of time, this egn is quite easy to solve: The general
solutionis ———
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Time evolution leads to interference and

* If 4(0)) is an eigenvector of H, [¢(t)) only gets a global phase:
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* Consider wha?happé}nZWhen 1(0)) = «|Ex) + B|Ea):
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#H(t) with slow time dependence
* But what if Hchanges in time? Sol. of Schréedinger's eqn is much more difficult.
But at each time t we have\“instantaneous eigenstates” |E;(t))\satisfying
H(t) |E;(t)) = Ej(t) [E;(t))
» Assume 7(t) changes very slowly|(adiabatic)/and the energy levels E; do not
coincide with is case, if at t=0 the qubits are in one of the
eigenstates|Z;(0)) of H(t = 0), they will remain in the “instantaneous
eigenstate”)[E;(t)). Example:
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Adiabatic theorem
* Let be the instantaneous eigenstate of@
wi s(t)) < E;jy11(s(t)). Assume that at t = 0, 5(0) = 0 and
|f¢’)(())> |E;(0))) Then, if %(tf) = 1]and
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Adiabatic quantum computation (AQC)

* Engineer a Hamiltonian that changes in time so that i?{(t = 0)lhas a known
product state as its ground state, e.g. < %)
[£0(0)) = ) [+~ 1) = zgengm

* And for t=t,, H(ts) has a ground state that encodes the solution to the
problem you want to solve. E.g. for adiabatic Deutch-Josza:

* So that performing a measurement ( I_W) will give the desired

answer to the problem.
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Example: Adiabatic version of Deutch-Josza algorithm

* Recall gate model Deutch-Josza: * Adiabatic version:
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