
Phys 507A - Solid State Physics I

Assignment 1: Electrons in crystals. Due Jan. 26th

1. Periodic potential in 1d.

Consider an electron subject to a 1d periodic potential,

U(x) =
∞∑

n=−∞
v(x− na), (1)

where v(x−na) represents the potential barrier against an electron tunnelling between
the ions on opposite sides of the point na. For simplicity we assume that v(x) = v(−x)
(inversion symmetry), and v(x) = 0 for |x| ≥ a/2. But other than this the potential
U(x) is quite general.

Remarkably, the band structure of the 1d solid can be expressed quite simply in terms
of the transmittance and reflectance of an electron hitting the barrier v(x). Denote
the energy of the incident electron to be ε = h̄2K2/2m. The variable K =

√
2mε/h̄

parametrizes the energy of the electron. Consider an electron incident from the left
on the potential barrier v(x); since v(x) = 0 for x ≥ a/2, in these regions the wave
function ψl(x) will have the form

ψl(x) = eiKx + re−iKx, x ≤ −a
2

= teiKx, x ≥ a

2
. (2)

Here t and r are the transmission and reflection coefficients, respectively. Their actual
dependence on K is given by the form of the barrier v(x). However, one can deduce
the properties of the band structure of the periodic potential U by appealing only to
very general properties of t and r. Because v(x) is even, ψr(x) = ψl(−x) is also a
solution to the Schröedinger equation with energy ε. From Eq. (2) it follows that

ψr(x) = te−iKx, x ≤ −a
2
,

= e−iKx + reiKx, x ≥ a

2
. (3)

Since ψl and ψr are two independent solutions to the single-barrier Schröedinger equa-
tion with the same energy, any other solution with that energy will be a linear combi-
nation of these two; in addition, since the crystal potential is identical to v(x) in the
region |x| ≤ a/2, any solution to the crystal Schröedinger equation with energy ε in
the |x| ≤ a/2 region must be given by

ψ(x) = Aψl(x) +Bψr(x). (4)



Now Bloch’s theorem asserts that ψ can be chosen to satisfy

ψ(x+ a) = eikaψ(x), (5)

for a suitable k (different than K!). Differentiating the above equation we also find
that

ψ′(x+ a) = eikaψ′(x). (6)

(a) By imposing the conditions (5) and (6) at x = −a/2, and using Eqs. (2)–(4), show
that the energy of the Bloch electron is related to its wavevector k by:

cos (ka) =
t2 − r2

2t
eiKa +

1

2t
e−iKa, ε =

h̄2K2

2m
. (7)

Verify that this gives the right answer in the free electron case (v = 0).

We write the complex number t in terms of its magnitude and phase:

t = |t|eiδ. (8)

The real number δ is known as the phase shift, since it represents the change in phase
of the transmitted wave relative to the incident one. Electron conservation requires
that the probability of transmission plus the probability of reflection be unity,

|t|2 + |r|2 = 1. (9)

This, and some other useful information, can be proved as follows. Let φ1 and φ2 be
any two solutions to the one-barrier Schröedinger equation with the same energy:

− h̄2

2m
φ′′i + v(x)φi =

h̄2K2

2m
φi, i = 1, 2. (10)

Define the Wronskian w(φ1, φ2) by

w(φ1, φ2) = φ′1(x)φ2(x)− φ1(x)φ′2(x). (11)

(b) Prove that w is independent of x by deducing from Eq. (10) that its derivative
vanishes.

(c) Prove Eq. (9) by evaluating w(ψl, ψ
∗
l ) for x ≤ −a/2 and x ≥ a/2, noting that

because v(x) is real, ψ∗l will be a solution to the same Schröedinger equation as
ψl.

(d) By evaluating w(ψl, ψ
∗
r) prove that rt∗ is pure imaginary, so r must have the form

r = ±i|r|eiδ, (12)

where δ is the same as in Eq. (8).

2



(e) Show that as a consequence of Eqs. (7), (9), and (12) that the energy and wavevec-
tor of the Bloch electron are related by

cos (Ka+ δ)

|t|
= cos (ka). (13)

(f) Since |t| is always less than one, the left hand side of Eq. (13) will be larger than
one for K values in the neighbourhood of (Ka + δ) = nπ. In this case Eq. (13)
has no solutions for real k; the corresponding regions of energy are the energy
gaps.

Sketch the left hand side of Eq. (13) as a function of K, and show graphically
that real solutions for k can only exist within certain “bands” of K. These are
the energy bands. Note that |t| approaches unity for large K (the barrier becomes
increasingly less effective as the incident energy grows); therefore the K bands
become wider as K becomes larger (accordingly, the “forbidden” regions become
narrower).

(g) As a concrete example, consider

v(x) = gδ(x), (14)

where δ(x) is the Dirac delta function. The resulting crystal potential U(x) is the
so called “Dirac comb”, or “Kronig-Penney model”. Show that in this case

cot (δ) = − h̄
2K

mg
, |t| = cos (δ). (15)

(h) Substitute Eq. (15) into Eq. (13) and determine the allowed values ofK graphically
(Plot using numerical software such as Mathematica or Gnuplot).

The Kronig-Penney model is the textbook example of a one-dimensional periodic po-
tential. Note, however, that most of the structure we have established is independent
of the particular functional dependence of |t| and δ on K.

2. Bravais lattices, primitive vectors, basis.

In each of the following cases indicate whether the structure is a Bravais lattice. If it
is, give three primitive vectors; if it is not, describe it as a Bravais lattice with as small
as possible a basis.

(a) Base-centered cubic (simple cubic with additional points in the centers of the
horizontal faces of the cubic cell).

(b) Side-centered cubic (simple cubic with additional points in the centers of the
vertical faces of the cubic cell).
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(c) Edge-centered cubic (simple cubic with additional points at the midpoints of the
lines joining nearest neighbors).

3. Diamond lattice.

The diamond lattice, that is formed by the carbon atoms in a diamond crystal, is also
the lattice of several other important materials such as silicon, germanium, and grey
tin. The diamond lattice consists of two interpenetrating face-centered Bravais lattices,
displaced along the body diagonal of the cubic cell by one quarter the length of the
diagonal. It can be regarded as a fcc with a two-atom basis at 0 and a

4
(x̂+ ŷ + ẑ).

(a) Sketch the conventional cubic cell of the diamond lattice (a cube with side a).

(b) Calculate the nearest neighbor bond length in terms of the lattice parameter a.

(c) The diamond crystal has a = 3.57 Å; look up the mass for each carbon atom and
find the density for the diamond crystal.

(d) Prove that the diamond lattice has an inversion center at the midpoint of any
nearest-neighbor bond.

4. Packing fraction for a lattice.

The fcc is the most dense and the sc (simple cubic) is the least dense of the three cubic
Bravais lattices. The diamond structure is less dense than any of these. One measure
of this is that the coordination numbers are: fcc, 12; bcc, 8; sc, 6; diamond, 4. Another
is the following: Suppose identical solid spheres are distributed through space in such
a way that their centers lie on the points of each of these four structures, and spheres
on neighboring points just touch, without overlaping. Such an arrangement of spheres
is called a close-packing arrangement. Assuming that the spheres have unit density,
show that the density of a set of close packed spheres on each of the four structures
(the “packing fraction”) is:

fcc:
√

2π/6 = 0.74.

bcc:
√

3π/8 = 0.68.

sc: π/6 = 0.52.

diamond:
√

3π/16 = 0.34.

5. Simple hexagonal lattice.

The simple hexagonal Bravais lattice (sh) is given by stacking 2d triangular nets directly
above each other. The direction of stacking (a3 below) is known as the c-axis. Three
primitive vectors are:

a1 = ax̂,a2 =
a

2
x̂ +

√
3a

2
ŷ,a3 = cẑ. (16)
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The first two generate a triangular lattice in the x− y plane and the third stacks the
planes a distance c above one another.

(a) Using the explicit construction of the reciprocal lattice primitive vectors [Eq. (1.23)
in Snoke] show that reciprocal of the sh lattice is also sh, with lattice constants
2π/c and 4π/(

√
3a), rotated through 30◦ about the c-axis with respect to the

direct lattice.

The hexagonal close-packed (hcp) structure ranks in importance with the bcc and the
fcc Bravais lattices; about 30 elements crystallize in the hcp form. The hcp consists of
two interpenetrating sh Bravais lattices, displaced from one another by 1

3
(a1 + a2) +

1
2
a3. The name hcp reflects the fact that close-packed hard spheres can be arranged in

such a structure. Consider stacking cannonballs, starting with a close packed triangular
lattice as the first layer; the next layer is formed by placing a ball in the depressions
left in the center of every other triangle in the first layer, thereby forming a second
triangular layer, shifted with respect to the first. The third layer is formed by placing
balls in alternate depressions of the second layer, so that the third layer lies directly
above the balls in the first layer. The fourth layer lies directly above the second, and
so on.

(b) For the case of cannon balls, prove that c/a =
√

8/3 = 1.63. This value of c/a
is called “ideal”; of course, atoms are not cannon balls, and in nature the hcp
structure is found with c/a ranging from 1.56 (for Be) to 1.89 (for Cd).

(c) For what value of c/a does the ratio have the same value in both direct and
reciprocal lattices? If c/a is ideal in the direct lattice, what is its value in the
reciprocal lattice?

6. Free electron energies in the reduced zone scheme.

Consider the free electron energy bands of an fcc crystal in the approximation of an
empty lattice, but in the reduced zone scheme in which all k′s are transformed to lie
in the first Brillouin zone. Plot roughly in the [111] direction the energies of all bands
up to six times the lowest band energy at the zone boundary at k = 2π

a
(1
2
, 1
2
, 1
2
). Let

this be the unit of energy. This problem shows why band edges need not necessarily be
at the zone center. Several of the degeneracies (band crossings) will be removed when
account is taken of the crystal potential.

7. Density of states for a 2d system.

Show that the density of states in an isotropic 2d system near a band minimum or
maximum does not depend on the energy of the electrons.

8. Density of states for a 1d tight-binding model.
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The band energy dispersion for a 1d tight-binding model is given by

εk = ε0 − 2t cos (ka), (17)

for k ∈ (−π/a, π/a] (1st Brillouin zone). Find the energy density of states.

9. Effect of disorder on the semi-circle density of states.

A simple model for an energy band in a 3d crystal is given by the semi-circle density
of states,

ρ(ε) =
8N

πW 2

√(
W

2

)2

− ε2. (18)

We assumed the energy band is centered at ε = 0, and that W is the bandwidth (N
is the number of atoms). Of course, Eq. (18) has sharp cut-offs at the band edges
ε = ±W/2.

Let’s assume the presence of “long wavelength” disorder, meaning that some regions
of the crystal have lattice spacings greater than others. By long wavelength we mean
that the length scale for variations of the lattice spacing is much larger than the lattice
spacing itself. In the absence of any additional information, we may assume that W is
normal distributed:

P (W ) =
1√

2π∆2
e−

(W−W0)2

2∆2 , (19)

with W0 as the mean and ∆ as the root-mean-square deviation.

Show that the resulting density of states is given by

〈ρ(ε)〉 =
4N

πW0

∫ ∞
|ε′|

dx
e
− 1

2ξ2
(1−x)2

x
√

2πξ2

√
1−

(
ε′

x

)2

. (20)

For notational simplicity we defined ε′ = 2ε/W0, ξ = ∆/W0, and x = W/W0. Use
Mathematica to plot 〈ρ(ε′)〉/[4N/(πW0)] for ξ = 0.01, 0.1, 0.3, 0.5, 1, and show that the
second term in Eq. (20) gives rise to exponential “smoothing” of the band edge.
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