
Phys 507A - Solid State Physics I

Assignment 2: Electronic quasiparticles. Due Feb. 9th

1. Free electron gas in two dimensions.

Consider a free electron in two dimensions (energy εk = h̄2k2

2m∗
).

(a) Show that the density of states per unit energy and per unit area is given by
ρ(ε) = ρ0 = m

πh̄2
. The calculation is identical to the one you did in problem 7 of

A1, except that now you have to take spin degeneracy into account.

(b) The occupation fraction for each state is given by the Fermi-Dirac distribution,

f(ε) =
1

e
ε−µ
kBT + 1

, (1)

where µ is the chemical potential and kB is Boltzmann’s constant. Denote the
2DEG density by n2DEG = N/A, with N the average number of particles and A
the area occupied by the electrons. Using this definition, show that the chemical
potential depends on temperature according to the expression:

µ(T ) = kBT ln
(

e
+
n2DEG
ρ0kBT − 1

)
. (2)

(c) The definition of Fermi energy is that it equals the chemical potential at T = 0,
εF = µ(T = 0). For a 2DEG with n2DEG = 1011 cm−2 at T = 2 K, calculate
the amount by which µ differs from εF , and the fractional error that you get by
assuming µ ≈ εF (assume m∗ = me).

2. Donor impurities in a semiconductor.

What makes semiconductors the material of choice in the microelectronics industry is
the fact that we can dope them with impurities. Doping controls the amount of charge
carriers, hence it controls the semiconductor conductivity.

Consider the substitution of one of the lattice atoms by another atom with one addi-
tional valence electron. For example, for a silicon lattice, substitute one of the silicon
atoms by a group V atom (P, As, Sb, Bi). The group V atom is denoted a “donor
impurity” because it has valence five, i.e., one electron more than the reference atom
Si. In the effective mass approximation (valid for length scales much larger than the
lattice spacing), we may assume that this extra electron moves with mass m∗, and sees
the group V atom as a Coulomb center with charge Q = +|e| (e < 0 is the modulus of
the electron’s charge). This leads to the effective potential V (r) = − e2

4πε0εr
, where the

dielectric constant ε models the “screening” effect of the silicon medium (the Coulomb
force is reduced due to the electronic polarization of the covalent crystal).



(a) Write down the effective Hamiltonian for the extra electron, and find its ground
state wavefunction and its ground state energy. Find the effective ionization
energy Ed and the effective Bohr radius a∗.

(b) For silicon, assume ε = 11.7, and m∗ = 0.3me. Calculate the values of a∗ and Ed.
Optical ionization experiments show that Ed ≈ 45 meV. How does our theoretical
calculation compare to the measured value?

3. How to make a two-dimensional electron gas (2DEG).

A heterojunction is a combination of two semiconductors that forms a two-dimensional
electron gas at its interface. Consider a junction of pure AlAs and n-doped GaAs.
While AlAs has a similar (“matching”) lattice parameter as GaAs, its band gap is much
larger. Because of this, carrier electrons in GaAs will not be able to penetrate into
AlAs; when we apply an electric field perpendicular to the sample the carrier electrons
will be confined at the interface. In this problem, you will find the temperature regime
for which these electrons can be considered effectively two-dimensional.

(a) As a simple model, assume the confining potential at the interface is a triangular
well: V (z) = +|e|Ez for z ≥ 0, and V (z) = ∞ for z < 0. Here z = 0 is the
interface, and z > 0 goes into GaAs. Write down the Hamiltonian for carrier
electrons in the effective mass approximation.

(b) Show that the family of wavefunctions

Ψ(r) = CnAi(κz + ξn)
eik·r⊥
√

A
, (3)

are eigenstates of the Hamiltonian. Here Ai are Airy functions, and ξn are the n-th
zeroes of the Airy functions; Cn is a normalization constant (no need to calculate
Cn), and r⊥ = (x, y) is the coordinate of the 2D electron. Thus, conclude that
the 3D free electron band is now broken into an infinite set of subbands, each with

dispersion εn,k = En+
h̄2k2⊥
2m∗

. Find the subband energy En in terms of the confining
electric field E. The characteristic length scale z0 = 1/κ gives the “2DEG width”.
Find z0 in terms of the confining electric field.

(c) Argue that at low temperatures, T � T2D, the system will behave like a true
2D electron system. What is the characteristic temperature T2D? Compute the
characteristic temperature for a GaAs heterojunction, with confining electric field
E = 104 V/cm (The effective mass for GaAs is m∗ = 0.067me).

4. Landau levels in the symmetric gauge.

Consider 2D electrons subject to a magnetic field perpendicular to the plane, B = Bẑ.
In the symmetric gauge, the vector potential equals to A = 1

2
B×r = B

2
(−y, x) (Note,

this is different from the asymmetric gauge A = Bxŷ assumed in the book).
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(a) Show that the Hamiltonian for the electrons can be written as

H = − h̄2

2m∗
∇2
⊥ +

1

2
m∗

(
ωc
2

)2

r2 +
ωc
2
L̂z, (4)

where ωc = eB
m∗

is the cyclotron frequency, and L̂z = h̄
i
∂
∂θ

is the angular momentum
operator, with x = r cos θ and y = r sin θ.

(b) The eigenstates of this Hamiltonian are ΨN,m(r) = RN,m(r)eimθ, where N =
0, 1, 2, . . . is a radial quantum number and m is a magnetic quantum number
(representing the magnetic moment of the electron going around in a circle). The
eigenenergies are EN,m = 1

2
(2N + |m|+m+1)h̄ωc. Argue that these eigenenergies

are identical to the result found for the asymmetric gauge, and find the relation-
ship between the Landau quantum number ν [see Eq. (2.44) in the book] and the
quantum numbers N,m.

(c) Consider the wavefunction

ΨN=0,m≤0(r, θ) = rme−
r2

2l2 eimθ, (5)

for magnetic quantum number m ≤ 0 only. Here l is the magnetic length. Find
the value of l such that Eq. (5) is an eigenstate of H with energy corresponding to
the lowest Landau level ν = 0. The magnetic length l sets the scale for magnetic
field effects in the 2DEG.

Hint : Use ∇2
⊥Ψ = 1

r
∂r(r∂rΨ) + 1

r2
∂2
θΨ.

5. Semiclassical model of electron dynamics.

You can think of each electron carrying current in a metal as a wavepacket of Bloch
states. If this wave packet has a well defined quasi-momentum (∆k is small), then
by the uncertainty principle the wavepacket will run over many unit cells (i.e., ∆r ∼
1/∆k � a, with a the lattice parameter). In this case we can show that the electron
dynamics will be governed by the following equations:

ṙ =
1

h̄
∇kEnk ≡ vnk,

h̄k̇ = e [E(r, t) + vnk ×B(r, t)] , (6)

with the electron charge e < 0.

(a) Prove that the wave packet moves in such a way that the electron energy [Enk +
eφ(r(t))] remains constant. Hint: Compute d

dt
[Enk+eφ(r(t))] and use E = −∇φ.

(b) The current density is given by

J =
1

V

∑
all electrons

ev = e
∑
n

∫ d3k

4π3
vnk gn(k), (7)
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where gn(k) is a distribution (or occupation) function for each band. A filled
band has gn(k) = 1. Prove that the electrical current carried by the electrons
of a filled band is always zero. Hint: Use the theorem that the integral over any
primitive cell of the gradient of a periodic function is equal to zero.

(c) A partially filled band will have gn(k) ≤ 1. Prove that the current produced
by occupying with electrons a specified set of levels is precisely the same as the
current that would be produced if (i) the specified levels were unoccupied and (ii)
all other levels in the band were occupied but with charge of −e (opposite to the
electron’s charge). In other words, we can think of current carriers in a partially
filled band as either electrons or holes.

(d) In the absence of an applied electric field, gn(k) = f(Enk) [f(Enk) is the Fermi
function, as in Eq. (1)]. In this case, prove that J = 0 (no current without an
electric field).

(e) Under the application of an electric field, the distribution function becomes

gn(k) = f(Enk) + eE · vnkτ(Enk)

(
−∂f(E)

∂E

)
, (8)

with τ(Enk) the mean free time between collisions for the electron at state nk
(also known as the relaxation time). The conductivity tensor σ is defined from
J = σ · E. Using the equations and definitions above, derive an expression for
the tensor σ as an integral over d3k.

(f) Consider an isotropic metal, i.e. with conduction band Enk = En0 + h̄2k2

2m∗
. In

this case the conductivity tensor will be diagonal, σ = σ1. Show that the zero
temperature (T = 0) conductivity is given by

σ =
ne2τ(EF )

m∗
, (9)

where n = N/V is the carrier electron density (N is the number of electrons in
the conduction band).

(g) At T = 0, is it correct to say that only electrons at the Fermi level contribute to
conductivity? At T > 0, which electrons contribute to conductivity?
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