Phys 507A - Solid State Physics I

Assignment 4: Quantum waves: Phonons and photons. Due Mar. 16th

1. Coherent states.

A coherent state is defined as the eigenstate of the anihilation operator \hat{a},

$$
\begin{equation*}
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle, \tag{1}
\end{equation*}
$$

with eigenvalue given by the complex number α (Note, \hat{a} is not Hermitian, so it can have complex eigenvalues).
(a) Prove that the state

$$
\begin{equation*}
|\alpha\rangle=\mathrm{e}^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{2}
\end{equation*}
$$

is a coherent state, i.e., it satisfies Eq. (1).
(b) Prove that the coherent state [Eq. (2)] is normalized.
(c) Note that the probability of measuring n phonons (or n photons) in the coherent state is Poisson. What is the mean number of phonons in this state and what is its root-mean-square deviation?
2. Specific heat due to lattice vibrations.
(a) Show that the low temperature specific heat of a crystal is proportional to T^{d}, where T is the temperature and d is the dimension of the crystal.
(b) How does the high temperature specific heat scales with temperature?
3. van Hove singularities.
(a) In a linear harmonic chain with only nearest-neighbor interactions, the normalmode dispersion relation has the form $\omega(k)=\omega_{0}|\sin (k a / 2)|$, where the constant ω_{0} is the maximum frequency and a is the distance between the atoms. Show that the density of normal modes in this case is given by

$$
\begin{equation*}
g(\omega)=\frac{2}{\pi a \sqrt{\omega_{0}^{2}-\omega^{2}}} . \tag{3}
\end{equation*}
$$

The singularity at $\omega=\omega_{0}$ is a van Hove singularity. The van Hove singularity in the phonon density of states appears whenever $\left|\nabla_{k} \omega\right|=0$.
(b) In three dimensions the van Hove singularities are infinities not in the normal mode density itself, but in its derivative. Show that the normal modes in the neighborhood of a maximum of $\omega(\boldsymbol{k})$, for example, lead to a term in the phonon density of states that varies as $\left(\omega_{0}-\omega\right)^{1 / 2}$.Hint: Assume the dispersion for \boldsymbol{k} in the neighborhood of \boldsymbol{k}_{0} can be approximated by $\omega \approx \omega_{0}-\alpha\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right)^{2}$.
The phonon density of states can be measured using neutron scattering. A typical phonon density of states is shown in p. 465 of Ashcroft \& Mermin. Note the presence of kinks as a function of ω; each of these kinks are van Hove singularities.

4. Second quantization.

When dealing with quantum mechanics of many-particle systems, it is convenient to reformulate the Schröedinger equation in the language of creation and destruction operators, a procedure denoted second quantization.

In the language of first quantization, the Hamiltonian takes the form

$$
\begin{equation*}
H=\sum_{i=1}^{N} T\left(x_{i}\right)+\frac{1}{2} \sum_{i \neq j=1}^{N} V\left(x_{i}, x_{j}\right) \tag{4}
\end{equation*}
$$

where T is the kinetic energy and V is the potential energy of interaction between two particles. For example, $T(\boldsymbol{x})=-\frac{\hbar^{2}}{2 m} \nabla^{2}$, and $V=\frac{e^{2}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|}$ is the Coulomb interaction between electrons.

Now consider a complete set of single-particle wave functions $\left\langle\boldsymbol{x} \mid \phi_{k}\right\rangle \equiv \phi_{k}(\boldsymbol{x})$. These satisfy the completeness relation, $\sum_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|=1$. For example, consider plane waves, $\phi_{k}(x)=\mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$.

A complete set of many-particle states may be built by constructing all antisymmetric (for fermions) or symmetric (for bosons) combinations of single-particle states. This procedure is quite cumbersome. A much more convenient way is to seek a completely different quantum mechanical basis that describes the number of particles occuppying each state.

Denote $\left|n_{1} n_{2} n_{3} \cdots\right\rangle$ as the state with n_{1} particles in state ϕ_{1}, n_{2} particles in state ϕ_{2}, etc. We can make this basis more concrete by introducing creation operators a_{k}^{\dagger} and destruction operators a_{k} that act on this Hilbert space. For example, if $|0\rangle$ denotes the vacuum (state with no particles), then $a_{k}^{\dagger}|0\rangle=\left|\phi_{k}\right\rangle$, and $a_{k}\left|\phi_{k}\right\rangle=|0\rangle$. We may write

$$
\begin{equation*}
\left|n_{1} n_{2} \cdots n_{\infty}\right\rangle=\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}} \cdots\left(a_{\infty}^{\dagger}\right)^{n_{\infty}}|0\rangle \tag{5}
\end{equation*}
$$

The key point of second quantization is that this occupation state will be antisymmetric under particle interchange if we assume the operators satisfy the following anticommutation rules:

$$
\begin{equation*}
\left\{a_{k}, a_{k^{\prime}}^{\dagger}\right\}=\delta_{k, k^{\prime}} \quad ; \quad\left\{a_{k}, a_{k^{\prime}}\right\}=\left\{a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right\}=0 \tag{6}
\end{equation*}
$$

Here $\{A, B\}=A B+B A$ is the anticommutator of operators A, B. Similarly, the occupation state will be symmetric under particle interchange if we assume the operators satisfy

$$
\begin{equation*}
\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k, k^{\prime}} \quad ; \quad\left[a_{k}, a_{k^{\prime}}\right]=\left[a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right]=0 \tag{7}
\end{equation*}
$$

where $[A, B]=A B-B A$ is the usual commutator. For convenience, we write $[A, B]_{ \pm}=$ $A B \pm B A$, keeping in mind that fermions anticommute, and bosons commute.
(a) Define the field operator

$$
\begin{equation*}
\hat{\psi}(\boldsymbol{x})=\sum_{k} \phi_{k}(\boldsymbol{x}) a_{k} \quad ; \quad \hat{\psi}^{\dagger}(\boldsymbol{x})=\sum_{k} \phi_{k}^{*}(\boldsymbol{x}) a_{k}^{\dagger} . \tag{8}
\end{equation*}
$$

Show that $\left[\hat{\psi}(\boldsymbol{x}), \hat{\psi}^{\dagger}\left(\boldsymbol{x}^{\prime}\right)\right]_{ \pm}=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$, and $\left[\hat{\psi}(\boldsymbol{x}), \hat{\psi}\left(\boldsymbol{x}^{\prime}\right)\right]_{ \pm}=\left[\hat{\psi}^{\dagger}(\boldsymbol{x}), \hat{\psi}^{\dagger}\left(\boldsymbol{x}^{\prime}\right)\right]_{ \pm}=0$.
(b) Show that $\hat{\psi}^{\dagger}|0\rangle=|\boldsymbol{x}\rangle$, i.e., the field operator creates a particle localized at the point \boldsymbol{x} in space. Similarly, $\hat{\psi}(\boldsymbol{x})$ destroys a localized particle at \boldsymbol{x} (in other words, $\hat{\psi}(\boldsymbol{x})$ creates a hole at $\boldsymbol{x})$.
(c) The quantity $\hat{\psi}^{\dagger}(\boldsymbol{x}) T(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x})$ is interpreted as a kinetic energy density. Similarly, $\hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}^{\dagger}\left(\boldsymbol{x}^{\prime}\right) V\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \hat{\psi}\left(\boldsymbol{x}^{\prime}\right) \hat{\psi}(\boldsymbol{x})$ is the interaction energy density for a pair of particles at $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$. Therefore the complete Hamiltonian of the many-particle system may be written as

$$
\begin{equation*}
H=\int d^{3} x \hat{\psi}^{\dagger}(\boldsymbol{x}) T(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x})+\int d^{3} x \int d^{3} x^{\prime} \frac{1}{2} \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}^{\dagger}\left(\boldsymbol{x}^{\prime}\right) V\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \hat{\psi}\left(\boldsymbol{x}^{\prime}\right) \hat{\psi}(\boldsymbol{x}) . \tag{9}
\end{equation*}
$$

Note the ordering of the last two operators. Using this prescription, show that

$$
\begin{equation*}
H=\sum_{k, k^{\prime}} a_{k}^{\dagger}\langle k| T\left|k^{\prime}\right\rangle a_{k^{\prime}}+\frac{1}{2} \sum_{k, k^{\prime}, k^{\prime \prime}, k^{\prime \prime \prime}} a_{k}^{\dagger} a_{k^{\prime}}^{\dagger}\left\langle k k^{\prime}\right| V\left|k^{\prime \prime} k^{\prime \prime \prime}\right\rangle a_{k^{\prime \prime \prime}} a_{k^{\prime \prime}} \tag{10}
\end{equation*}
$$

This Hamiltonian is a convenient sum over state quantum numbers (Compare to first quantization, where the Hamiltonian is expressed as a sum over the N particle labels).

