
Phys 507A - Solid State Physics I

Assignment 4: Quantum waves: Phonons and photons. Due Mar. 16th

1. Coherent states.

A coherent state is defined as the eigenstate of the anihilation operator â,

â|α〉 = α|α〉, (1)

with eigenvalue given by the complex number α (Note, â is not Hermitian, so it can
have complex eigenvalues).

(a) Prove that the state

|α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n〉 (2)

is a coherent state, i.e., it satisfies Eq. (1).

(b) Prove that the coherent state [Eq. (2)] is normalized.

(c) Note that the probability of measuring n phonons (or n photons) in the coherent
state is Poisson. What is the mean number of phonons in this state and what is
its root-mean-square deviation?

2. Specific heat due to lattice vibrations.

(a) Show that the low temperature specific heat of a crystal is proportional to T d,
where T is the temperature and d is the dimension of the crystal.

(b) How does the high temperature specific heat scales with temperature?

3. van Hove singularities.

(a) In a linear harmonic chain with only nearest-neighbor interactions, the normal-
mode dispersion relation has the form ω(k) = ω0| sin (ka/2)|, where the constant
ω0 is the maximum frequency and a is the distance between the atoms. Show
that the density of normal modes in this case is given by

g(ω) =
2

πa
√
ω2

0 − ω2
. (3)

The singularity at ω = ω0 is a van Hove singularity. The van Hove singularity in
the phonon density of states appears whenever |∇kω| = 0.



(b) In three dimensions the van Hove singularities are infinities not in the normal
mode density itself, but in its derivative. Show that the normal modes in the
neighborhood of a maximum of ω(k), for example, lead to a term in the phonon
density of states that varies as (ω0 − ω)1/2.Hint: Assume the dispersion for k in
the neighborhood of k0 can be approximated by ω ≈ ω0 − α(k − k0)2.

The phonon density of states can be measured using neutron scattering. A typical
phonon density of states is shown in p. 465 of Ashcroft & Mermin. Note the
presence of kinks as a function of ω; each of these kinks are van Hove singularities.

4. Second quantization.

When dealing with quantum mechanics of many-particle systems, it is convenient to
reformulate the Schröedinger equation in the language of creation and destruction
operators, a procedure denoted second quantization.

In the language of first quantization, the Hamiltonian takes the form

H =
N∑
i=1

T (xi) +
1

2

N∑
i 6=j=1

V (xi, xj), (4)

where T is the kinetic energy and V is the potential energy of interaction between two
particles. For example, T (x) = − h̄2

2m
∇2, and V = e2

|xi−xj | is the Coulomb interaction

between electrons.

Now consider a complete set of single-particle wave functions 〈x|φk〉 ≡ φk(x). These
satisfy the completeness relation,

∑
k |φk〉〈φk| = 1. For example, consider plane waves,

φk(x) = eik·x.

A complete set of many-particle states may be built by constructing all antisymmetric
(for fermions) or symmetric (for bosons) combinations of single-particle states. This
procedure is quite cumbersome. A much more convenient way is to seek a completely
different quantum mechanical basis that describes the number of particles occuppying
each state.

Denote |n1 n2 n3 · · ·〉 as the state with n1 particles in state φ1, n2 particles in state φ2,
etc. We can make this basis more concrete by introducing creation operators a†k and
destruction operators ak that act on this Hilbert space. For example, if |0〉 denotes the
vacuum (state with no particles), then a†k|0〉 = |φk〉, and ak|φk〉 = |0〉. We may write

|n1 n2 · · · n∞〉 = (a†1)n1(a†2)n2 · · · (a†∞)n∞|0〉. (5)

The key point of second quantization is that this occupation state will be antisymmetric
under particle interchange if we assume the operators satisfy the following anticommu-
tation rules:

{ak, a†k′} = δk,k′ ; {ak, ak′} = {a†k, a
†
k′} = 0. (6)
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Here {A,B} = AB + BA is the anticommutator of operators A,B. Similarly, the oc-
cupation state will be symmetric under particle interchange if we assume the operators
satisfy

[ak, a
†
k′ ] = δk,k′ ; [ak, ak′ ] = [a†k, a

†
k′ ] = 0, (7)

where [A,B] = AB−BA is the usual commutator. For convenience, we write [A,B]± =
AB ±BA, keeping in mind that fermions anticommute, and bosons commute.

(a) Define the field operator

ψ̂(x) =
∑
k

φk(x)ak ; ψ̂†(x) =
∑
k

φ∗k(x)a†k. (8)

Show that [ψ̂(x), ψ̂†(x′)]± = δ(x−x′), and [ψ̂(x), ψ̂(x′)]± = [ψ̂†(x), ψ̂†(x′)]± = 0.

(b) Show that ψ̂†|0〉 = |x〉, i.e., the field operator creates a particle localized at the
point x in space. Similarly, ψ̂(x) destroys a localized particle at x (in other words,
ψ̂(x) creates a hole at x).

(c) The quantity ψ̂†(x)T (x)ψ̂(x) is interpreted as a kinetic energy density. Similarly,
ψ̂†(x)ψ̂†(x′)V (x,x′)ψ̂(x′)ψ̂(x) is the interaction energy density for a pair of par-
ticles at (x,x′). Therefore the complete Hamiltonian of the many-particle system
may be written as

H =
∫
d3xψ̂†(x)T (x)ψ̂(x) +

∫
d3x

∫
d3x′

1

2
ψ̂†(x)ψ̂†(x′)V (x,x′)ψ̂(x′)ψ̂(x). (9)

Note the ordering of the last two operators. Using this prescription, show that

H =
∑
k,k′

a†k〈k|T |k′〉ak′ +
1

2

∑
k,k′,k′′,k′′′

a†ka
†
k′〈kk′|V |k′′k′′′〉ak′′′ak′′ . (10)

This Hamiltonian is a convenient sum over state quantum numbers (Compare
to first quantization, where the Hamiltonian is expressed as a sum over the N
particle labels).
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