Phys 507A - Solid State Physics I

Assignment 4: Quantum waves: Phonons and photons. Due Mar. 16th

1. Coherent states.

A coherent state is defined as the eigenstate of the anihilation operator a,
ala) = afay), (1)

with eigenvalue given by the complex number « (Note, G is not Hermitian, so it can
have complex eigenvalues).

(a) Prove that the state

-l Z f'” (2)

is a coherent state, i.e., it satisfies Eq. (1).
(b) Prove that the coherent state [Eq. (2)] is normalized.

(c) Note that the probability of measuring n phonons (or n photons) in the coherent
state is Poisson. What is the mean number of phonons in this state and what is
its root-mean-square deviation?

2. Specific heat due to lattice vibrations.

(a) Show that the low temperature specific heat of a crystal is proportional to T4,
where T is the temperature and d is the dimension of the crystal.

(b) How does the high temperature specific heat scales with temperature?
3. van Howve singularities.

(a) In a linear harmonic chain with only nearest-neighbor interactions, the normal-
mode dispersion relation has the form w(k) = wo|sin (ka/2)|, where the constant
wo is the maximum frequency and a is the distance between the atoms. Show
that the density of normal modes in this case is given by

gw) = — o 3)
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The singularity at w = wy is a van Hove singularity. The van Hove singularity in
the phonon density of states appears whenever |V w| = 0.



(b) In three dimensions the van Hove singularities are infinities not in the normal
mode density itself, but in its derivative. Show that the normal modes in the
neighborhood of a maximum of w(k), for example, lead to a term in the phonon
density of states that varies as (wy — w)"/2. Hint: Assume the dispersion for k in
the neighborhood of ko can be approvimated by w ~ wy — a(k — ko).

The phonon density of states can be measured using neutron scattering. A typical
phonon density of states is shown in p. 465 of Ashcroft & Mermin. Note the
presence of kinks as a function of w; each of these kinks are van Hove singularities.

. Second quantization.

When dealing with quantum mechanics of many-particle systems, it is convenient to
reformulate the Schréedinger equation in the language of creation and destruction
operators, a procedure denoted second quantization.

In the language of first quantization, the Hamiltonian takes the form
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where 7' is the kinetic energy and V' is the potential energy of interaction between two
2
particles. For example, T'(x) = —;—mV2, and V = ﬁ is the Coulomb interaction

between electrons.

Now consider a complete set of single-particle wave functions (x|¢r) = ¢r(x). These
satisfy the completeness relation, > |¢x)(¢x| = 1. For example, consider plane waves,
dr(x) = etF2.

A complete set of many-particle states may be built by constructing all antisymmetric
(for fermions) or symmetric (for bosons) combinations of single-particle states. This
procedure is quite cumbersome. A much more convenient way is to seek a completely
different quantum mechanical basis that describes the number of particles occuppying
each state.

Denote |ny ns n3 -- ) as the state with ny particles in state ¢, no particles in state ¢s,
etc. We can make this basis more concrete by introducing creation operators aL and
destruction operators a; that act on this Hilbert space. For example, if |0) denotes the
vacuum (state with no particles), then a|0) = |¢), and ax|éx) = [0). We may write

[nans - noe) = (af)™ (ad)™ -+ (al,)"=10). (5)

The key point of second quantization is that this occupation state will be antisymmetric
under particle interchange if we assume the operators satisfy the following anticommu-
tation rules:

{ag,al} = e 3 {ag, ap} = {a},al,} =0. (6)



Here {A, B} = AB + BA is the anticommutator of operators A, B. Similarly, the oc-
cupation state will be symmetric under particle interchange if we assume the operators
satisfy

[ak,a,z,] =0k 5 |ak,ar] = [aL,aL] =0, (7)
where [A, B] = AB— BA is the usual commutator. For convenience, we write [A, B]; =
AB + BA, keeping in mind that fermions anticommute, and bosons commute.

(a) Define the field operator

(@) =Y de(@ar ; Pi(x) =Y dj(@)al. (8)

Show that [¢)(z), §f(2')]+ = §(z—a'), and [{(x), ¥ (2')]= = [T (@), ' (@)« = 0.
(b) Show that ¥f|0) = |z), i.e., the field operator creates a particle localized at the

point @ in space. Similarly, () destroys a localized particle at @ (in other words,
() creates a hole at x).

(c) The quantity @T(a:)T(Aw)zﬂ(:g) is interpreted as a kinetic energy density. Similarly,
V()i (2")V (2, ")) (x )b (x) is the interaction energy density for a pair of par-
ticles at (x,x’). Therefore the complete Hamiltonian of the many-particle system

may be written as
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H= [ debi@T@)b@) + [ [ a5l @) @)V (@)@ b@). ()
Note the ordering of the last two operators. Using this prescription, show that

1
H =Y al(k|T|K)ay + = > alal (kK|V|K'K"apmay. (10)
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This Hamiltonian is a convenient sum over state quantum numbers (Compare
to first quantization, where the Hamiltonian is expressed as a sum over the N
particle labels).



