
Phys 507B - Solid State Physics II

Assignment 3: Optical properties from charged excitations. Due March 3rd

1. Sum rule for the dielectric function.

The dielectric function is subject ot various sum rules. For example, show that the
Kramers-Kronig relations imply

∫ ∞
0

Im[ε(ω)] ω dω =
πe2N

2m∗V
, (1)

no matter what the frequency distribution of oscillators in the medium.

2. Semiclassical theory of phonon-polaritons.

Here we consider the following Hamiltonian density as a model for a optical phonon
interacting with light:

H =
1

2n
Π2 +

1

2
nω2

T − γ12u ·E −
1

2
γ22E

2, (2)

where u = u(r, t) is the elastic displacement field modelling the phonons, with n
the mass density, ωT the transverse phonon frequency, and Π = nu̇ the momentum
associated to the phonon field. The electric field E represents light, with the coupling
constants γ12 and γ22 to be determined below. Note how this Hamiltonian is isotropic.
Physically, γ12 represents the coupling of phonons to electric field, while γ22 represents
all the terms that contribute to χe but don’t depend on phonons (e.g. the polarizability
of the electronic cloud).

The modes of vibration have to satisfy the Hamiltonian equations of motion together
with Maxwell’s equations. Considering that D = ε0E + P these are:

u̇ =
∂H
∂Π

,

Π̇ = −∂H
∂u

,

∇ · (ε0E + P ) = 0,

∇ ·B = 0,

∇×B = ε0
∂E

∂t
+
∂P

∂t
,

∇×E = −∂B
∂t

. (3)



(a) Find the equation of motion for the phonon field (the first two equations above).
Also, find the electric polarization using the definition

P = −∂H
∂E

. (4)

Considering the ω = 0(zero frequency or static case), use the equation of motion
and the polarization to show that(

γ212
nω2

T

+ γ22

)
= (ε(0)− ε0) . (5)

Now consider ω =∞; in this case, argue that u = 0 and relate γ22 to ε(∞).

(b) Search for a longitudinal solution of the equations with the form Ez, Pz, uz ∝
ei(kz−ωt), and all other fields equal to zero. Are the phonons coupled to photons in
this case? For which frequency is this an allowed solution? Call it ωL and relate
to ε(0), ε(∞), and ωT .

(c) Now look for transverse solutions of the form

Ex = E0e
i(kz−ωt); Px = P0e

i(kz−ωt);

ux = u0e
i(kz−ωt); Hy = H0e

i(kz−ωt). (6)

Assume all other fields are zero, and write the resulting equations as a homoge-
neous system. Determine the polariton dispersion analytically and make a sketch
labelling the phonon like and photon like branches.

3. Plasmons: Semiclassical model.

Consider a jellium model for a thin sheet of metal: Think of the atomic ions as forming
a fixed positive background with charge density ρ+ = −n e (here n is the number of
electrons per unit volume and e < 0 is the electron’s charge); the conduction electrons
form a uniform jellium with charge density ρ− = n e. The vibrational modes of the
conduction electron gas with respect to this positive matrix is called a plasmon.

(a) Assume that the electron gas is displaced by an amount z with respect to its
positive background along the direction perpendicular to the plane (the ẑ direc-
tion). From Newton’s law, find the equation of motion for z, and show that the
frequency of oscillation of the plasma will be

ω2
p =

ne2

ε0m∗
. (7)

Hint: Use Gauss’ law to find the internal electric field (the “depolarizing field”)
created by displacing the electron gas by z.
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(b) Assume an external electric field of the form Eexte
−iωt is applied perpendicular to

the plasma. Find the response of the system (its polarization as a function of ω)
and show that the dielectric constant is given by

ε⊥(ω) = ε0

(
1−

ω2
p

ω2

)
. (8)

Hint: There is a tricky issue here: The dielectric constant is defined from P =
ε0χeEint, not from P = ε0χeEext. Note that for external field perpendicular to
the metal sheet we will get Eint = Eext − ne

ε0
z = Eext − P/ε0.

(c) Now assume the external field Eexte
−iωt is applied parallel to the metal’s plane. If

the displacement of the plasma is x, argue that there will be no depolarizing field
(i.e. Eint = Eext) and find the polarization induced along the x̂ direction. Com-
pute the dielectric constant ε‖(ω), and show that the result is identical to Eq. (8).
Hence ε(ω) is isotropic despite the fact that the system is quite anisotropic! Sketch
ε(ω) as a function of ω and label the frequency regions where the metal will be
transparent, as well as the frequency region where the metal will absorb light
(where does the photon energy go to?).

4. Surface plasmons.

Consider a semi-infinite plasma on the positive side of the plane z = 0. A solution
of Laplace’s equation ∇2φ = 0 in the plasma is φi(x, z) = A cos (kx)e−kz, whence
Ezi = kA cos (kx)e−kz, and Exi = kA sin (kx)e−kz. Here i means inside (z > 0) and o
means outside (z < 0).

(a) Show that in the vacuum φo(x, z) = A cos (kx)ekz for z < 0 satisfies the boundary
condition that the tangential component of E be continous at the boundary; that
is, find Exo.

(b) Note that Di = ε(ω)Ei; Do = Eo. Show that the boundary condition that the
normal component of D be continuous at the boundary requires that ε(ω) = −1.
Use the dielectric function of the free eletron gas [Eq. (8) derived above] to find
the Stern-Ferrell result:

ω2
s =

1

2
ω2
p (9)

for the frequency ωs of a surface plasma oscillation.
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