
Phys 507B - Solid State Physics II

Assignment 5: Magnetism.Due April 21st

1. Phenomenological (Landau) theory of Ferromagnetism.

The free energy F of a magnetic system may be written as the volume integral of a
free energy density:

F =
∫

d3xF [Mµ(x), ∂νMµ(x)] . (1)

Here the order parameter for the phase transition is the three component “Classical”
vector M(x) = Mµ(x)êµ, where Mµ(x) is the µ-th component of the magnetization

at position x = xν êν in the material, and ∂νMµ = ∂Mµ

∂xν
is one of the spatial derivatives

of Mµ.

Consider the following model free energy for an isotropic ferromagnet,

F =
α

2

∑
µ,ν

(∂νMµ)2 +
β

2
M2 +

γ

4
M4 −H ·M , (2)

where α and γ are always positive.

(a) The ground state of the system is found by minimizing F . Show that M0 will be
an extremum when it satisfies

δF
δM

=
∂F
∂Mµ

êµ − ∂ν
∂F

∂(∂νMµ)
êµ =

∂F
∂M

−∇ · ∂F
∂(∇M)

= 0. (3)

The generalized derivative δF
δM

is known as the functional derivative, a derivative
in the space of functions. Of course, you should always remember that some
extrema are maxima (unstable) and other extrema are minima (stable). Only the
latter will be a physical phase of matter.

Hint: Find this relationship from the δF = 0 condition. The calculation is just
like the minimization of the action in classical mechanics, you will need to use
integration by parts to get the divergence term.

(b) Assume H = 0 for now. Find the ground state M0 that minimizes F, for (i)
β < 0, and (ii) for β > 0. Show that this state is ferromagnetic only when β < 0.
For β > 0, argue that the state is paramagnetic. We set β = β0(T − Tc), where
Tc is the transition temperature.

(c) For T > Tc, show that the static magnetic susceptibility is given by χ = 1
β0(T−Tc)

.

(d) For T < Tc, show that the static magnetic susceptibility is given by χ = 1
2β0(Tc−T )

.



2. Classical derivation of the Landau-Lifshitz equation of motion

So far we have only considered the dependences of the magnetization on space and
temperature. When we drive the magnet with a time dependent magnetic field, the
magnetization will precess. Here you will derive, under quite general assumptions, the
equation that describes this time dependence.

Consider a classical system of N particles, described by coordinates ri and canonical
momenta pi, i = 1, . . . , N . Assume that the dynamics of the system is governed by the
Hamiltonian H(ri, pi). Consider two macroscopic observables A(ri, pi) and B(ri, pi).
A useful concept is the Poisson bracket :

{A, B} =
∑

i

(
∂A

∂ri

· ∂B

∂pi

− ∂A

∂pi

· ∂B

∂ri

)
. (4)

It turns out that the Poisson bracket is the classical version of the commutator in
quantum mechanics. You may convince yourself that all familiar properties of the
commutator in quantum mechanics also apply to the Poisson bracket. The classical to
quantum transition is obtained by {, } → 1

ih̄
[, ] (for example, note that {x, px} = 1.

(a) Prove that
dA

dt
= {A, H} (5)

Hint: Use the derivative chain rule and substitute Hamilton’s equations of motion.

(b) Define the angular momentum density at position x as

L(x) =
∑

i

ri × piδ(x− ri). (6)

Show that
{Lα(x), Lβ(y)} = εαβγLγ(x)δ(x− y). (7)

Here εαβγ is the Levi-Civita symbol.

(c) The magnetization density is given by M(x) = γeL(x), where γe = ge
2mec

is the
gyromagnetic ratio (of course, in addition to classical angular momentum, we
must add the spin contribution to M – It turns out that all arguments and
results described below are absolutely general and apply equaly well to quantum
spin).

Show that

{Mα(x), Mβ(y)} = γeεαβγMγ(x)δ(x− y), (8)

{Mα(x), ∂νMβ(y)} = γeεαβγMγ(x)
∂

∂yν

δ(x− y). (9)
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(d) Using the general result of item (a), and the Poisson brackets of item (c), derive
the Landau-Lifshitz equation of motion:

∂M(x)

∂t
= −γeM(x)× δF

δM(x)
. (10)

Hint: In place of H, use the free energy F =
∫

d3yF . Assume that the density F
is analytical on Mµ and ∂νMµ, i.e., it can be expanded as a power series on these
observables.

3. Phenomenological theory of spin waves in a simple ferromagnet.

The equation of motion derived in problem 4 can be used to find the excited states of
the simple ferromagnet described in problem 3. Use the free energy Eq. (2), with an
applied magnetic field H = H0ẑ.

(a) Assume a spin wave state M = M0ẑ + δM(x, t). This is a perturbation over
the ground state M0 derived in problem 3. Assume that the perturbation δM is
in the xy plane (it has to be – look at the Landau-Lifshitz equation of motion).
Show that the linearized equation of motion [after dropping terms of order (δM)2]
becomes

∂δM

∂t
= γeαM0 ×∇2δM − γeH × δM . (11)

Search for plane wave solutions δM(x, t) = δMei(k·x−ωt) and find the magnon
dispersion, ω(k).

(b) Spin resonance. Now assume H = H0ẑ + δHe−iωt, where δH is in the xy plane.
Find the dynamic susceptibility matrix defined by δM = χ(ω) · δH . Show that
it diverges when ω equals the magnon frequency at k = 0.

4. Symmetries of the “quantum” Heisenberg Hamiltonian.

Consider the Heisenberg Hamiltonian

H = −J
∑
j,δ

Sj · Sj+δ − 2µ0H0

∑
j

Sjz. (12)

The total spin operator is given by S =
∑

j Sj.

(a) Prove that [Sz,H] = 0.

(b) Prove that [S2,H] = 0.
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